A semilinear heat equation with initial data in negative Sobolev spaces

نویسندگان

چکیده

We give a sufficient conditions for the existence, locally in time, of solutions to semilinear heat equations with nonlinearities type \begin{document}$ |u|^{p-1}u $\end{document}, when initial datas are negative Sobolev spaces id="M2">\begin{document}$ H_q^{-s}(\Omega) id="M3">\begin{document}$ \Omega \subset \mathbb{R}^N id="M4">\begin{document}$ s \in [0,2] id="M5">\begin{document}$ q (1,\infty) $\end{document}. Existence is instance proved id="M6">\begin{document}$ q>\frac{N}{2}\left(\frac{1}{p-1}-\frac{s}{2}\right)^{-1} This an extension id="M7">\begin{document}$ (0,2] $\end{document} previous results known id="M8">\begin{document}$ = 0 critical value id="M9">\begin{document}$ \frac{N(p-1)}{2} We also observe uniqueness some appropriate class.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initial blow-up solution of a semilinear heat equation

We study the existence and uniqueness of a maximal solution of equation ut − ∆u + f(u) = 0 in Ω× (0,∞), where Ω is a domain with a non-empty compact boundary, which satisfies u = g on ∂Ω × (0,∞), assuming that g and f are given continuous functions and f is also convex, nondecreasing, f(0) = 0 and verifies Keller-Osserman condition. We show that if the boundary of Ω satisfies the parabolic Wien...

متن کامل

The Complex Ginzburg-Landau Equation with Data in Sobolev Spaces of Negative Indices

The initial value problem for the complex Ginzburg-Landau equation of the form (σ > 0, A ≥ 0, a > 0, b > 0, ν, μ being real): ∂tu = Au + (a + iν)∆u− (b + iμ)|u|2σu, (x, t) ∈ R × (0,∞) with initial data u(x, 0) = u0(x) ∈ Hr p is considered. The local wellposedness is established for u0 ∈ Hr p if r and p satisfy 1 < p < ∞, 1 σ(2σ + 1) ≤ n p < 1 σ r0 < r < −2σr0, r0 = n p − 1 σ This result reduces...

متن کامل

Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations

In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...

متن کامل

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.

متن کامل

The Kawahara equation in weighted Sobolev spaces

Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2021

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2020365